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Thermal nucleation of kink-antikink pairs in a nonlinear Klein-Gordon �NKG� model with a Remoissenet-
Peyrard �RP� substrate potential in the presence of impurities and coupled to an applied field is analyzed in the
limits of moderate temperature and strong damping. Using the Kolmogorov method, the average velocity of
particles of the lattice is calculated and its dependence on the intensity of impurities is discussed in connection
with the deformability parameter or the shape of the RP substrate potential. Numerical values are carried out
by making use of parameters of the hydrogen atom adsorbed in the tungsten and ruthenium substrates. We
show that, for large values of the applied field, the presence of impurities in the system makes the nucleation
process of kink-antikink pairs more favorable in the high-temperature regime while they contribute to make it
less favorable in the low-temperature regime.
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I. INTRODUCTION

Nucleation is generally defined as a phenomenon where a
new phase appears locally in space. It is one of the most
drastic phenomena in the various fields of physics, chemistry,
biology, and also engineering �1�. More precisely, the nucle-
ation in condensed matter physics is most interesting in the
sense that it can be controlled by parameters such as pres-
sure, temperature, electric and magnetic fields, and so on.
One usually distinguishes homogeneous and heterogeneous
nucleation. In the first case, embryos of a stable phase
emerge from a matrix of a metastable parent phase due to
spontaneous thermodynamic fluctuations. Droplets larger
than a critical size will grow while smaller ones decay back
to the metastable phase �2–4�. In the second case, random
forces catalyze the transition by making growth energetically
favorable �1�.

The study of the nucleation connected to the formation of
solitary structures in spatially one-dimensional �1D� and
multistable systems is well developed theoretically �4–20�,
experimentally, and numerically �21–25�. These studies offer
a fundamental understanding of nucleation in a homoge-
neous medium. More specifically, theoretical analysis of
nucleation was introduced four decades ago by Seeger and
Schiller �10� to describe the kinetic process of dislocation
and a few years later by Langer �4� to investigate the prob-
lem of reversing the direction of magnetization in a ferro-
magnetic system. The same ideas, but where the approach is
closely related to the concepts already developed in the dis-
location literature, were also developed by Büttiker and Lan-
dauer �16� to present a detailed calculation of the nucleation
rate of thermal kink-antikink pairs in the overdamped sine-
Gordon �SG� chain and by Yemélé and Kofané �5� to present
the calculation of the nucleation rate of kink-antikink pairs in
a driven and overdamped deformable chain. This theory was
later improved by Marchesoni et al. �20� when analyzing the
thermal nucleation of kink-antikink pairs in an elastic string.

The above studies deal with nucleation in homogeneous
systems. However, most of the realistic physical systems
possess impurities which may influence the nucleation pro-
cess and disturb the newly formed kink-antikink pairs. Inho-
mogeneity may mean spatial modulation, quasiperiodicity, or
disorder of several kinds. For example, local inhomogene-
ities �microshunts and microresistors� may be installed into
the long Josephson junction during fabrication �see Ref.
�26��. Neutron scattering experiments by Boucher et al. �27�
on quasi-1D magnetic compounds �magnetic chains�, which
have revealed that the crossover from ballistic to diffusive
behavior of solitons is driven by the impurity concentration,
evidences the fact that these materials contain impurities. In
compounds whose electrical properties are due to the exis-
tence of charge density waves �CDW’s�—that is, interacting
electron gas—impurities may also be present and represent
the sites or atoms where electrical properties are different
from those of the host atom—for example, Br disorder in
K2Pt�CN�4Br0.3nH2O�KCP�. In adatomic systems, impuri-
ties are also present due to the geometrical imperfections of
the adsorbed surfaces which in general are at the origin of
the spatial deformation of the nucleus, to name only a few.

The nucleation in condensed matter physics may be con-
sidered in the framework of the Frenkel-Kontorova �FK�
model �28�, which describes the behavior of an harmonic
chain of atoms in the periodic substrate potential, known as
the nonlinear Klein-Gordon �NKG� model with SG potential.
This model can be generalized by considering another form
of potential and by taking into account inhomogeneities in
order to go beyond the mathematical problem and to obtain
results that may be useful for real materials that undergo
structural changes such as shape distortion, variations of
crystalline structures, or conformational changes in some re-
gions of their physical parameters. By the way, the study of
the effect of local inhomogeneity or single impurity on the
nucleation in the case of CDW’s shows that the CDW’s can
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be pinned by an impurity if the external applied field is less
than a threshold field �29�. Similarly, it has been demon-
strated that the current carried by CDW’s may rise as a result
of the increase in the rate of generation of solitons on fluc-
tuations in the random field of defects �30�. In quasi-1D
magnetic compounds, it has also been shown that stochastic
motion of SG solitons in a random potential can be used to
model their statistical properties. This random potential is
generated by the presence of impurities and explains the ob-
served crossover from the ballistic to the diffusive behavior
of spin correlations �31�. Although these results are quite
interesting, they are limited to the rigid substrate potential.
Thus at this stage of research one may wonder what is the
influence of the shape of the substrate potential on the nucle-
ation process in these inhomogeneous systems. The answer
to this question is the main objective of the present work. In
this paper we focus our attention on the Remoissenet-
Peyrard �RP� substrate potential whose shape can be varied
continuously as a function of a deformability parameter and
which has the SG shape as a particular case �32,33�. In ad-
dition, it can be successfully used to model the substrate
potential along the surface of adsorbed layers in adatomic
systems �see, e.g., Ref. �34� and references therein�.

The organization of the paper is as follows: In Sec. II, we
present the generalized NKG model under consideration in
the presence of impurities. In Sec. III, we reformulate the
basic results on the nucleation rate of kink-antikink pairs in
the homogeneous system �5� by taking into account the non-
Gaussian correction in the spirit of Marchesoni et al. �20�. In
Sec. IV, we focus our attention on the influence of impurities
on the nucleation rate of kink-antikink pairs. The mean time
for a transition of an arbitrary point on the chain to a neigh-
boring valley of the Peierls distribution is calculated by
means of the Kolmogorov method in order to obtain the
mean velocity or average velocity of particles from one site
to an adjacent one, due to the passing of kinks triggered by
stochastic forces. In Sec. V, experimental values of the lattice
parameters for H/W and H/Ru adsystems are used as a nu-
merical application to quantify the correction factor of the
mean velocity of particles, due to the presence of impurities
in the system. Finally, Sec. VI is devoted to concluding re-
marks.

II. MODEL DESCRIPTION

We consider a generalized NKG model describing the dy-
namics of a chain of particles in a periodic nonsinusoidal
substrate potential in the presence of external forces and im-
purities. The dynamical behavior of the system is governed
by the nonlinear Langevin equation �NLE�

Mutt − kuxx + V0
dVRP�u,r�

du
= − �ut + F + ��x,t� −

dVimp�u�
du

,

�1�

where u is the longitudinal dimensionless displacement of
the particles from their equilibrium position along the x axis.
The subscripts x and t denote the derivative with respect to
space and time, respectively. V0 is the amplitude of the sub-

strate potential. The constant force F is related to the applied
field f through the relation F= f /2�. To model the “on-site”
potential VRP�u ,r�, we shall use the nonsinusoidal substrate
potential introduced by Remoissenet and Peyrard �32,33�:

VRP�u,r� = �1 − r�2 1 − cos u

1 + r2 + 2r cos u
, �2�

where r is the shape parameter, �r��1. As this parameter
varies, the amplitude of the potential remains constant with
degenerate minima 2�n and maxima �2n+1�� while its
shape changes. When r�0, it has flat bottoms separated by
thin barriers, while for r�0, it has the shape of sharp wells
separated by flat wide barriers �see Fig. 1�. At r=0, the RP
potential reduces to the well-known SG potential. This pa-
rameter depends on the physical characteristics of each sys-
tem. For example, in quasi-1D compounds whose electrical
properties are due to the existence of CDW’s, the substrate
potential which corresponds to the interaction of CDW’s
with the host atom may be calculated up to higher order of
the perturbation theory. Up to the first order of this perturba-
tion theory, we obtain the SG potential which is a good ap-
proximation only in the weak- and strong-coupling cases.
Thus, at higher order, in addition to the first harmonic which
describes the SG potential, one also obtains the second, third,
and higher harmonics �35�. The compact form of this inter-
action between CDW’s and host atoms may then be approxi-
mated by the RP-type function where the parameter describ-
ing the shape of the substrate potential depends on the
amplitude of the CDW gap, the Fermi velocity, and the qua-
siparticle energy. Similarly, for the adatomic systems, the
parameter r of the substrate potential is related to the fre-
quency �0 of oscillation of an isolated adatom at the bottom
of the adsorption site, the adatom mass ma, and the period as
of the substrate potential �36�; more precisely, r= �1−�� / �1
+��, with �=�0�as /2���2ma /V0�1/2. Note that the above pa-
rameters for the adatomic systems are related to the charac-
teristic parameters of the system described by the NLE �1�.

The coupling of the scalar field u�x , t� to the heat bath at
absolute temperature T is described by a viscous term −�ut
and a zero-mean Gaussian noise source ��x , t�. At Boltzmann
equilibrium, the damping constant �=M�0, where �0 corre-
sponds to the rate of the energy exchange with the substrate,
and the noise intensity are related through the fluctuation-
dissipation relationship

���x,t���x�,t��� = 2kBT�	�x − x��	�t − t�� . �3�

Finally, the last term of the NLE �1�, Vimp�u�, is the potential
energy density of impurities and its analytical expression de-
pends on the nature of these impurities since various types of
impurities may exist such as the local variations of masses of
particles, of elastic constants, and of substrate potential bar-
riers, respectively. It has been shown that in the presence of
impurities, the nonlinear waves may be trapped, reflected, or
transmitted with more or less distortion of their structure
according to the intensity of the impurities �37,38�. We as-
sume here that impurities are randomly distributed in the
system and then cause the deformation of any spatially lo-
calized structure as a main effect. A simple realization of the
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proposed model is obtained by considering the analytical ex-
pression

Vimp�u� = Vf�x�
�u

�x
, �4�

where Vf�x� is a random function of the spatial coordinate.
Thus, the quantity dVimp�u� /du in the NLE �1� is then equal
to dVf�x� /dx. In addition, we restrict our analysis to the case
where impurities are weak and where their mean separation
is less than the characteristic length of the system �or the size
of kink solitons�, 
0= �k /V0�1/2, which enables us to describe
the statistical properties of this random field by

�Vf�x�Vf�x���V = �	�x − x�� , �5�

with zero mean ��Vf�x��V=0�, where � describes the intensity
of impurities and �¯�V denotes the average over the different
realizations of the random potential Vf�x�. Note also that
expression �4� can be successfully used to describe forward
scattering of CDW’s in the quasi-1D compounds whose elec-
trical properties are due to the existence of CDW’s �30�. In

the next sections, we shall have occasion to use the Hamil-
tonian derived from the NLE �1� which is given by

H =� dx

a
	M

2
ut

2 +
k

2
ux

2 + V0VRP�u,r� − Fu + Vimp�u�
 ,

�6�

where a is the lattice constant. In this expression, since u is
the dimensionless displacement of particles, the parameters
M, k, and V0 have the dimension of �mass�� �length�,
�energy�� �length�, and �energy�� �length�−1, respectively.

Before ending this section, we would like to mention that
the NLE �1� with the Hamiltonian �6� is well known as the
generalized NKG model. This NKG model has been success-
fully used in investigations of a number of physical phenom-
ena such as CDW’s, adsorbed layers of atoms, domain walls
in ferromagnetic and antiferromagnetic systems, crowdions
in metals, and hydrogen-bonded systems �see, e.g., the re-
view paper in �39� and references therein for applications of
the NKG model�. The use of the RP potential as a substrate
potential is justified by the fact that it can be invoked to

FIG. 1. Substrate potential VRP�u ,r� as a function of u /2� for a few values of the deformability parameter: �1� r=−0.3, �2� r=0.0 �sG
case�, �3� r=0.3, and �4� r=0.9.
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describe a large amount of physical systems. As a result, an
appropriate choice of the shape parameter enables us to em-
ploy a suitable form of the shape of the potential close to the
system under consideration such as epitaxial or incommen-
surate structure �36� in crystals and other various systems.

III. NUCLEATION OF KINK-ANTIKINK PAIRS IN THE
HOMOGENEOUS SYSTEM

The dynamics of the pure system obtained from the NLE
�1� by setting its right-hand side equal to zero is dominated
by elementary excitations: phonons and solitons �kink and
antikink�. While phonons are extended modes of the system,
solitons are localized modes and may be viewed as effective
particles characterized by a mass and an energy. In a number
of situations, kink dynamics may be described by equations
of its collective coordinates—namely, the kink center of
mass. If one assumes periodic boundary conditions on the
chain of length L, u�x , t�=u�x+L , t�, kinks are only present
as a result of thermal activation. These thermal kinks are
created in pairs involving a kink and an antikink. On the
other hand, if the system is not subjected to periodic bound-
ary conditions or, in other words, if the ends of the string are
free, the so-called “geometric” solitons of the same sign ap-
pear in the system. Characteristic parameters of kink solitons
in the pure system governed by the NLE �1� are well known
�5�. For example, the pseudokink width d, the static kink
�antikink� energy �Es�, and the rest mass �Ms� are given by

d�1� = 
0/, d�2� = 
0,  =
1 − �r�
1 + �r�

, �7a�

Es
��� = 8�kV0�1/2G����r�, Ms

��� = �8/�0�G����r� , �7b�

with �=1,2, and

G�1��r� = /* tanh−1 *, �7c�

G�2��r� = * tan−1�*/� ,

* = �1 − 2,

where the superscripts ��=1� and ��=2� stand for 0�r�1
and −1�r�0, respectively, and 
0 designates the character-
istic length of the system. For r=0, the above equations re-
duce to those of the usual SG kink soliton.

In the presence of an applied field, the total on-site poten-
tial energy, given by

V�u,F� = V0VRP�u,r� − Fu , �8�

is the sum of the substrate potential energy V0VRP�u ,r� and
the energy due to the applied field, −Fu. The minima �usn�
and the maxima �uin� of the above on-site potential energy
�8� which are known as Peierls valleys and Peierls hills, re-
spectively, are different from those of the substrate potential
energy and may disappear if the applied field F is greater
than the threshold value Fm �5�:

Fm/V0 =
2�22��32 − 1� + ������ − 3�1 − 2�

�52 − 3 + ���
, �9�

with �=94−142+9. This means that kink solutions of the
NLE �1� can only exist if F�Fm. Note that these Peierls
valleys and Peierls hills obey dV�u ,F� /du=0. More specifi-
cally, the NLE �1� describing the configuration of the nucleus
in a pure system may also be viewed as the equation of
motion of a classical “particle” with mass k and time x in a
potential −V�u ,F�, where V�u ,F� is given by Eq. �8�. The
critical nucleus of amplitude �um will be a configuration
which deviated only in a localized region from the uniform
state usn followed by motion to the right until the turning
point usn+�um is reached. Then, the particle again returns
asymptotically to the local maxima at usn. The corresponding
stationary solution of the NLE �1� is the saddle-point con-
figuration or the critical nucleus which departs from the sta-
tionary uniform state usn at x= ±�. Its amplitude �um
strongly depends on the applied field. Furthermore, �um de-
creases monotonically with respect to F :�um=2� for F=0
and �um=0 for F=Fm. The transition between two adjacent
Peierls valleys due to thermal fluctuations called the critical
nucleus is the newly formed kink-antikink pairs, whose size
depends on the applied field F. This transition is possible
only if the fluctuations produce, within the system, a mini-
mum of energy �EN�kBT necessary to create a critical
nucleus uN�x ,X�, where X designates the position of the
newly formed kink which in the continuum limit is linearly
time dependent—that is, X�t�=X0+vt ,X0 being the critical
initial position of the kink center of mass and v the kink
velocity. For F�Fm, the nucleus uN�x ,X� can be well ap-
proximated by the linear superposition of a kink and an an-
tikink centered at ±X, respectively—that is,

uN�x,X� = u+�x + X,0� + u−�x − X,0� , �10�

where the solutions u±�x , t� satisfy the NLE �1� without the
right-hand side.

In the overdamped limit ���V0
1/2�, where the inertial term

�Mutt� is neglected, the substitution of Eq. �10� into the NLE
�1� in the absence of the impurity leads to the following
equation for the nucleus:

dR

dt
= −

dVN
���

dR
+ �R�t� , �11�

with the reduced coordinate R=2X, where the potential of
the critical nucleus is given by

VN
����R� = −

2�F

�Ms
���R −

4Es
�������

�Ms
��� e−�R�/d���

, �12�

with

��1� = *
exp�− 2* tanh−1 *�

2 tanh−1 *
, �13�
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��2� = *
exp�2�*/�tan−1�*/��

tan−1�*/�
.

The noise �R�t� associated with Eq. �11� for the nucleus veri-
fies the fluctuation-dissipation relationship

��R�t��R�t��� = 2�2DR
���	�t − t��, DR

��� =
2kBT

�Ms
��� . �14�

Following the procedure outlined in Ref. �20� useful for
the calculation of the nucleation rate of kink-antikink pairs, it
is necessary to determine the size of the critical nucleus, RN

���,
and the negative eigenvalue �0

N��� of the nonuniform state.
Thus, the nucleus size is set by the condition that

�VN
�����R��RN

=0, leading to

RN
��� = d��� ln�2Es

�������

�Fd���  , �15�

and the negative eigenvalue of the nonuniform state, which
is the eigenvalue of the RP scattering potential in the pres-
ence of the applied field defined as
�d2V�u ,F� /d2u�uN

/ �d2V�u ,F� /du2�usn
, is given by

�0
N��� = �d2VN

����R�
dR2 �

RN

= −
2�F

�Ms
���d��� . �16�

In the limit where the shape parameter r→0, Eq. �13� re-
duces to 1 and, then, Eq. �16� reduces to that obtained for the
SG systems.

With the results above stated, in the Gaussian approxima-
tion, the improved formula of the number of kink-antikink
pairs per unit time and length is then given by

J̃0
��� = ����K����F�exp�− ��EN

���� , �17�

with �=1/kBT and the prefactor

���� = � �

2�
�3/2��

k
�1/2� ��0

N����
�

�1/2

��
n�1

p−1 � �

�n
N����1/2��EN

���

kBT
�1/2

�Q� , �18�

where �n
N��� are the eigenvalues of the nonuniform state, �

= �V0 /���d2V�u ,F� /du2�usn
, and Q the product of the eigen-

values of the localized eigenmodes of the critical nucleus. In
addition, p is the number of localized modes and strongly
depends on the shape parameter r. In fact, when r�0, the
system possesses two bound states �p=2�, with �n

N���=0 and
�0

N���, given by Eq. �16�. Moreover, internal modes appear
when r decreases from 0 to −1—for example, p=5 for r=
−0.5 and p=21 for r=−0.9.

The non-Gaussian correction K����F� to the nucleation rate
formula of kink-antikink pairs obtained through the Gaussian
approximation is given by �20�

K����F� = �
−�

�

exp�−
��0

N����
2DR

��� R2�dR��
0

�

exp�VN
����R�
DR

��� �dR .

�19�

In the absence of these correction terms—that is, K����F�
→1—Eq. �17� reduces to that obtained by Yemélé and Ko-
fané �5�. The presence of these factors gives rise to a better
estimation of the nucleation rate of kink-antikink pairs in the
system. The quantity �EN

��� interfering in Eq. �17� designates
the energy of the critical nucleus whose accurate value at a
given field F�Fm is evaluated numerically through the rela-
tion

�EN
�l� = �

−�

�

dx�k
duN�x�

dx
2

, �20�

where uN�x� satisfies the NLE �1� without the right-hand
side. However, for some particular cases, an explicit analyti-
cal expression of �EN

��� may be obtained.
For small F values �F�Fm�, the amplitude of the critical

nucleus is large and very close to 2�: �um
�1�=2�

−�4�F /V0�1/2 and �um
�2�=2�− �1/��4�F /V0�1/2. This

nucleus is called the large-amplitude nucleus �LAN� with
energy

�EN
��� � 2Es

����1 −
�d���F

Es
��� −

�d���F

Es
��� ln

2Es
�������

�Fd���  , �21�

where Es
��� designates the static kink energy defined in Eq.

�7�.
For large F values �F�Fm�, the amplitude of the critical

nucleus is close to zero. This critical nucleus solution of the
NLE �1� is called the small-amplitude nucleus �SAN� whose
analytical expression is given by

uN�x� = b sec h2�x/2
� , �22�

with amplitude

b = 3�1 + r2

1 − r2�tan usn�1 − 2� cos usn + 4�/cos usn

1 − 5� cos usn


�23a�

and size


2 = 
0
2�1 + r2

1 − r2�2� �1 + 2� cos usn�3

cos usn + 2��1 + sin2 usn�
 , �23b�

where �=r / �1+r2�. The energy of this SAN is also given by

�EN
��� = �24/5��kV0�1/2b�F/V0�1/2�1 + r2

1 − r2�
��1/tan usn + 4��1 + 2� cos usn��F/V0��1 + r2

1 − r2�22

.

�24�

whereIn the presence of random fields, this critical nucleus
may always exist in the system even at T→0 and resulting
from the combined effects of the energy fluctuations and the
applied field F. At high temperatures, the thermal nucleus
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will play the main role. In what follows, we focus our atten-
tion on the thermally activated kink-antikink pairs. The
above results constitute the starting point of the treatment of
the inhomogeneous system. In order to relate the results of
the nucleation rate of kink-antikink pairs to an easily acces-
sible physical parameter we will evaluate, in the next section,
the mean velocity of a particle in the chain which from a
macroscopic viewpoint accounts for this microscopic phe-
nomenon of the nucleation of kink-antikink pairs. Note that
this question has been of interest in the theory of dislocation
for more than four decades �6,8�. One should keep in mind
that at low temperatures and in the absence of fluctuations,
the particles undergo small-amplitude oscillations around
their equilibrium position. From a macroscopic viewpoint,
the system is at equilibrium. A remarkable displacement of
particles comes from its transition from one site to an adja-
cent one due to the expansion of the newly formed kink-
antikink pairs triggered by stochastic forces. The mean ve-
locity of this displacement is thus determined by the number
of kink-antikink pairs created per unit time and length. In
other physical systems, such as compounds whose electrical
properties at low temperatures are due to the existence of
CDW’s, the above mean velocity can be interpreted as the
electric current passing through the physical systems �30,40�.

IV. INHOMOGENEOUS SYSTEMS

A. Preliminaries

For real physical systems �inhomogeneous systems�, the
dynamics of the lattice may be described in terms of quasi-
particles which, however, now interact with one another or
with impurities. The interaction of nonlinear excitations with
impurities plays an important role in transport properties and
nucleation process of 1D systems. The kinks �antikinks� and
breathers may be trapped or reflected by local inhomogene-
ities as in the case of a discrete lattice where the kink can be
trapped in the Peierls-Nabarro energy �increment of the en-
ergy of the static kink due to the discrete character of the
lattice� �41�. When the intensity � of the random fields is
weak ��1/2�V0�, the impurity has little effect on the param-
eters of the critical nucleus �size, shape, and amplitude�.
However, the total energy �EN

* necessary to create this
nucleus is affected—that is, �EN

* =�EN+U�x�, where U�x� is
the increment on the energy of a nucleus due to the random
fields. From the Hamiltonian �6�, we can define this incre-
ment on the energy as

U�x� =� dx�

a
Vf�x���N�x − x�� , �25�

where �N�x−x� � depends on the shape of the nucleus, with
�N�x−x� �=�uN�x−x� � /�x. From the statistical properties
of the random function Vf�x� given by Eq. �5�, it is easy to
show that this increment of energy verifies the correlator

�U�x�U�y�� = �� dx�

a2 �N�x − x���N�y − x�� . �26�

Accordingly, the nucleation rate of kink-antikink pairs is
given in the factored form as

J̃ = J̃0 exp�− �U�x�� , �27�

where J̃0 is, in the first-order approximation in �, the nucle-
ation rate of kink-antikink pairs in the homogeneous system
defined by Eq. �17�. Thus, we are concerned here only with
the Arrhenius factor since � is small.

As mentioned in the preceding section, we focus our at-
tention on the mean velocity of particles, ��u /�t�. In fact, a
kink passing the point x of the chain to the right reduces the
displacement field u by 2� and the antikink passing x to the
right advances u by 2�. In the presence of an applied field,
the kink current is jk=−�nk and the antikink current j̄k=�n̄k,
where v is the kink velocity and nk and n̄k are the kink
density and antikink density, respectively. Therefore, the
mean velocity of particles can then be written as ��u /�t�=

−2���jk�− � j̄k��=4�vn0, where n0= �nk�= �n̄k� is the average
kink �antikink� density in a chain. The steady-state density
2n0 is maintained by balance of the annihilation �recombina-
tion� and the nucleation of kink-antikink pairs. From the
probability that the kink encounters an antikink in the inter-
val of time dt, one shows that the rate of recombination of n0
kinks and n0 antikinks per unit length and time is 2�n0

2 and

the balance for the steady-state density becomes J̃0−2�n0
2

=0, where J̃0 is the nucleation rate of kink-antikink pairs in
the homogeneous systems. We can then write the expression

of the mean velocity of particle as a function of J̃0 as

��u/�t� = 2�/�t� , �28�

where in the homogeneous system we have �t�= �2�J̃0�−1/2.
This result takes into account the fact that in the limit of
heavy damping, the kink-antikink collision is destructive.
The mean time �t� may be viewed as the time for the transi-
tion of an arbitrary point on the chain to the neighboring
minimum of the potential �8�. In the inhomogeneous system
which is under consideration, the above mean time can be
generalized by means of the Kolmogorov method as

�t� =��
0

�

dt exp�− �
0

x̃

J̃�z̃��t − ��z̃��dz̃� , �29�

where J̃�z̃� is the nucleation rate of kink-antikink pairs whose
center of mass lies at the point z̃ and ��z̃� is the travel time of
kinks initially located at the point z̃ to reach the point of
observation x̃. The exponential in the integrand �29� is the
probability that the point x̃=0 will be in the original mini-
mum of the potential �8� at time t �42�. This expression of the
mean time should take a simple particular form according to
whether the intensities of the applied field F and of the im-
purities are weak or not. As we shall see below, expression
�29� reduces to that obtained in the homogeneous system
when the intensity of the impurity potential takes the value
zero. This limiting case constitutes a proof that Eq. �29� takes
into account the annihilation of kink-antikink pairs due to the
strong dissipation of the system.
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B. Mean velocity of the chain in the threshold field „FÉFm…

In the range F�Fm, the critical nucleus corresponds to a
SAN defined in Eq. �22�. Since the random fields are weak
��1/2�V0�, impurities have little effect on the motion of
kinks and their velocity v may be considered to be the same
as in pure systems. Accordingly, from Eqs. �27� and �29�, the
mean time �t� is then given by

�t� =



v
�

0

�

dx�exp�− J0�
0

x

dz�ze−�U�z��� , �30�

with J0= �
2 /v�J̃0, where we have transformed the integra-
tion with respect to time t to integration with the dimension-
less spaced variables x and z through the relation t=
x /v,
where x= x̃ /
 and z= z̃ /
. After integration, we obtain

�t� =



�
� 2�

J0�exp�− �U�z���
. �31�

Substituting Eq. �31� into Eq. �28� yields

��u/�t� = �2��J̃0�1/2W1/2, �32�

with

W = �exp�− �U�z��� . �33�

Since in the homogeneous system the mean velocity is

��u /�t�= �2�vJ̃0�1/2, it follows from Eq. �32� that the factor
W1/2 designates the correction of this result when spatial in-
homogeneities are taken into account. In order to evaluate W,
we assume that the random field distribution is a Gaussian-
type function since the impurity-assisted nucleation mecha-
nism is local by definition �43�. This assumption is justified
by the fact that the random field can take positive and nega-
tive values near zero and its intensity is weak. Thus, the
probability distribution of this random field tends to 1 when
U�x� is zero and decreases to zero in the case of high values
of U�x�. Accordingly, having in mind that U�x��−�EN �that
is, �EN

* �0�, the mean W is then defined as

W = �
−�EN

�

P�U�exp�− �U�dU , �34�

where

P�U� =
1

�2��
exp�− U2/2�� �35�

is the probability distribution with

� = �U2� =
15

16
�a−2b2, �36�

where b is the amplitude of the critical nucleus given by Eq.
�23a�. Substituting Eq. �35� into Eq. �34� and integrating
yields

W =
1

2
exp��2�/2��1 − ���� − �EN

�2�
� , �37�

where � is the probability integral. The correction �37� is
valid for all absolute temperatures satisfying the constraint

��EN�1. For certain regimes of temperature, the probabil-
ity integral can be approximated by analytical expressions.

1. Low temperature regime

When the temperature satisfies the constraint ����EN,
the probability integral is then given by

���� − �EN

�2�
� = 1 − �1/��exp	− ��� − �EN

�2�
�2


��
i=0

n−1

�− 1�i��i + 1/2���� − �EN

�2�
�−�2i+1�

,

�38�

where � designates the gamma function. Limiting this series
to first order leads to the following expression for the correc-
tion factor:

W =
exp���EN�
��2��

exp�− �EN
2 /2�� . �39�

In Fig. 2�a�, we show that in this range of temperatures the
correction factor W1/2 increases when the shape of the sub-
strate potential deviates from the sinusoidal one �r�0�. Fur-
thermore, it appears that this factor is a decreasing function
of the applied field.

2. High-temperature regime

In the high-temperature regime, where the temperature
satisfies the constraint ����EN, Eq. �37� can be reduced, in
a first order approximation, to

W = exp��2�/2� . �40�

The analysis of this result shows that W1/2 is an increasing
function of F if r�0 as well as for r�0, as indicated in Fig.
2�b�. Note also that from the above expression, it is possible
to recover the result obtained previously in the homogeneous
system. In fact, in the limit �→0—e.g., �→0—the correc-
tion factor W tends to 1, in accordance with the physical
expectation, since, in this limit, the system is homogeneous.
Finally, the correction factor strongly depends on the shape
of the substrate potential via the energy ��N

��� and/or � at low
temperatures as well as at high temperatures.

C. Mean velocity of the chain in subthreshold fields „F™Fm…

In the low applied field �F�Fm�, two physical situations
can be obtained: the case where the applied field is greater
than the intensity of impurities �F��1/2� and the opposite
situation where it is small compared to the intensity of im-
purities ��1/2�F�. For the general case F�Fm, the kink suf-
fers the effects of thermal and stochastic fluctuations; when
the temperature is lower than the specific temperature T0�T
�T0=� /kB�EN

����, the kink motion has an activated character
whereas the kink activated by impurities plays the major role
for the high temperature �T�T0�.
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1. Case of �1/2�F�Fm

To evaluate the mean time �t�, here we have to take into
account the distance between the kink and impurities along
the line. It is then convenient to rewrite Eq. �29� in the form

�t� =
d�l�

v�l��
0

�

dx�exp�− J0�
0

x

dz�x − z�

�exp	− �
−�

�

dy�N�z − y� �y�
� , �41�

where x= x̃d��� is the dimensionless variable, d��� the kink
width defined in the preceding section, and  �y�=�Vf�y� is
the dimensionless random field whose properties are deter-
mined by the correlator � �y� �y���=�2�	�y−y�� following

from Eq. �5�. The calculation of the mean time �t� after ex-
panding the integrand of Eq. �41� into a series yields

�t� =
d�l�

v�l� �2�/J0W�1/2, �42�

with

W =�exp	− �
=1

m �
−�

�

��z − y� �y�dy
� .

As seen above, this quantity W describes the correction fac-
tor to the mean velocity of the chain due to the presence of
impurities in the system. Its calculation depends on the tem-
perature regime.

a. High temperature regime. To calculate the mean W, we

FIG. 2. Correction factor to the mean velocity of particles W, induced by the presence of impurities in the system, as a function of the
applied field F: �a� The case of large values of the applied field �F�Fm� and in the regime of low temperatures �T=280 K�. The intensity
of the impurity potential is taken to be �=1.11�10−2 �eV/Å�2. �b� The case of large values of the applied field �F�Fm� and in the
high-temperature regime �T=500 K�, for �=1.11�10−3 �eV/Å�2. �c� The case of weak applied field satisfying the constraint �1/2�F
�Fm and in the high-temperature regime �for example, T=400 K�, �=6.94�10−6 �eV/Å�2. �d� The case of very weak applied field �F
��1/2� and in the high-temperature regime. Here T=400 K and �=6.94�10−8 �eV/Å�2. Note that the choice of numerical values of the
intensity of the impurity potential, in either case, is dictated by the condition ����EN or ����EN.
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must remember that the statistical properties of the random
field Vf�x� are assumed to be 	 correlated �see Eq. �5��. Thus,
the distribution function P(Vf�x�) which satisfies this as-
sumption is equivalent to a Gaussian probability density:

P„Vf�x�… = exp�−
1

2�
� Vf

2�x�dx , �43�

where � is the intensity of the impurity. Accordingly, in the
high-temperature regime, the correction factor W may be
written as

W =
� D exp�− A�

� D exp�− A0�
, �44�

with

A =
1

2�2�
�  2�y�dy + �

i=1

m

dyi�N�zi − yi� �yi� �45a�

and

A0 =
1

2�2�
�  2�y�dy , �45b�

where A may be viewed as the “action.” We can evaluate this
correction factor by minimizing the action A to obtain the
extremal trajectory. The action corresponding to this particu-
lar path is equal to

Ac = −
1

2�2�
� dz��

i=1

m

�N�z − zi�2

. �46�

Next, we evaluated the series of these integrals. As pointed
out in Ref. �30�, to evaluate this series of integrals with re-
spect to z1 ,z2 ,z3 , . . . ,zm, we can readily verify that the prin-
cipal contribution come from the points lying close to the
surfaces zi=zj—that is, for G�zi−zj�=G�0��G0, where G is
related to the random field correlator as

�U�x�U�y�� = 4�d����
−�

� dz

a2� �uN�x − z�
�x

�� �uN�y − z�
�y

� �47a�

=4�d���G�x − y� , �47b�

where uN is the shape of the critical nucleus in a pure system.
Using Eqs. �43�–�47�, it follows that

W��� = exp��2�G0
���� , �48�

where the quantity G0
��� is given by

G0
��� = 4�1 −

�d���F

E��� −
�d���F

E��� ln
2E�������

�Fd���  . �49�

The variation of W as a function of the applied field F is
plotted in Fig. 2�c�. It appears that, in this range of tempera-
tures, the correction factor is less sensitive to the variation of
the applied field in the whole range of variation of the shape
parameter r.

b. Low-temperature regime. In the range of low tempera-
tures, it is necessary to take into account the fact that the
random field can be cut off. For this reason, we introduce, in
the expression of the mean W, the Heaviside function defined
as

!�x� =
1

2�i
lim
�→0

� dq
eiqx

q − i�
. �50�

For this purpose, the correction factor �42� is then given by

W =
� D !���EN +� �N�y − Z� �y�dyexp�− A�

� D !���EN +� �N�y − Z� �y�dyexp�− A0�
.

�51�

Using the same procedure as before, we obtain, after some
lengthy algebra,

W = e���EN
�l�+�2�G0

�l�/2���
�EN

�l� − ��G0
�l�

�2�G0
�l� � +

2

3��EN
�l� − ��G0

�l�

�2�G0
�l� �3

+
�

4
exp��EN

�l� − ��G0
�l�

�2�G0
�l� �2

�EN
�l�

�2�G0
�l�

+
2

3� �EN
�l�

�2�G0
�l��3

+
�

4
exp� �EN

�l�

�2�G0
�l��2 � , �52�

where G0
��� is given by Eq. �49�. This result is only qualitative since the perturbation approach is no longer valid. In fact, one

can easily show that in the low-temperature regime the main contribution to the mean velocity of particles in the chain is due
to random field fluctuations which are of the order of �EN. Thus, impurities can produce an appreciable change in the
equilibrium shape and size of the nucleus, and then the perturbation theory is no longer valid for a solution of the NLE �1�.
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2. Case of F��1/2�Fm

When the field F is small compared to the intensity of
impurities �1/2, the kink has to overcome the impurity poten-
tial. In accordance with the activation-type formula, the mo-
bility or the speed of the kink turns out to be �exp�
−�2� /2�. Taking into account this retardation of the kink by
impurities in the expression of the mean time �t�, we obtain

�t� = exp�− �2�/2���
0

�

dx exp�− J0e−�2�/2

��
0

x

dz exp	−�  �y���N�y� − z�dy�
�
z

x

dy

�exp	�  �y���s�x − y��dy�

�exp	�  �y���s�y� − z�dy�
� . �53�

By expanding the exponential in series and performing the
Gaussian integration over D for high temperatures, we obtain

�t� = exp�− �2�/2��
0

x

dxe−�2�B0 exp�− J0e−�2�/2�x2/2�

�exp��2��
i,j=1

n

�G�zi − zj� − 2C�zi − zj� + B�zi − zj���
�exp��2��

i,j=1

n

2�B�zi − x� − C�zi − x��� , �54�

where

B�zi − zj� =� dz�s�z − zi��s�z − zj�, C�zi − zj� =� dz�N�z

− zi��s�z − zj� . �55�

Integration of Eq. �54� can be easily performed if zi=zj, lead-
ing to the following expression of the mean time:

�t� = ��/2�1/2e−�2�/2e−�2��G0
���−B0

����/2J0
−1/2, �56�

and then the mean velocity of the chain

��u/�t� = �2�uJ̃0�1/2W���1/2
, �57�

with the correction factor

W�l� = exp��2�/2�exp��2��G0
��� − B0

����� , �58�

where B0
���=exp�RN

��� /d����. Figure 2�d� shows that the correc-
tion factor W is an increasing function of the applied field F
for r�0 and is less sensitive for r�0.

V. APPLICATION TO THE DIFFUSION OF HYDROGEN
ATOMS ON METALLIC SURFACES

The question of surface diffusion of atoms and molecules
adsorbed on metallic surfaces is a long-standing problem

which has recently attracted a renewal of interest with the
introduction of new ideas from the physics of nonlinear phe-
nomena. The experimental investigations of this problem are
based on two essential classes of methods �44�: the profile
evolution methods such as electron beam scanning and the
equilibrium methods such as the field ion microscopy. The-
oretical works are outlined by experimental studies which
evidence �36,45,46� an important role of collective motion of
adsorbed atoms �adatoms�. According to these experimental
studies, the diffusion of adatoms can be described by the
nonlinear dynamics of the well-known FK model which is
essentially a single model allowing an accurate description
of such a consistent motion of particles. In some cases, ada-
toms may be treated as quasi-1D systems where a chain of
interacting particles is placed in a “channel.” The atomic
chain is subjected to a one-, two-, or three-dimensional sub-
strate potential, which is periodic in one direction and un-
bounded in transverse directions, so that atoms are confined
transversally. However, when the concentration "C of ada-
toms is weak—i.e., closed to 1�"C�1�—one can ignore
atomic displacements in transverse directions and allow at-
oms to move only along the direction of the chain, and the
model reduces to a well-known FK model. The concentration
of adatoms is characterized here by the dimensionless param-
eter "C= p /q, the so-called coverage in surface physics,
where p is the number of atoms and q is the number of
minima of the substrate potential. In addition, previous stud-
ies �see, e.g., Refs. �34,36� and references therein� have
proved that the system of adsorbed atoms is subjected to a
nonsinusoidal substrate potential and that the RP potential
�see Eq. �2�� provides an accurate description of such a sub-
strate potential. According to these studies, the Hamiltonian
model described by Eq. �6� may be successfully used to
study the migration of atoms adsorbed on metallic surfaces.
For the case of the H/W and H/Ru adsystems, an estimate
parameter is r�−0.3 �5�. Thus, we apply the results of the
above analytical study to estimate the mean velocity of a
hydrogen atom on a Ru and W substrates induced by the
applied field F. Note that geometrical imperfections of the
adsorbed surfaces are considered here as impurities since
they are at the origin of the spatial deformation of the newly
created nucleus and consequently may be approximated by
the impurity potential given by Eq. �4�. The model param-
eters used in our numerical calculations are �5� V0�3.62
�10−2 eV Å−1 and k=3.57�10−1 eV Å. The lattice constant
a�3 Å is taken to be the distance between the wells along a
furrow on the W�112� surface since "C�1. In addition, the
shape parameter of the substrate potential is taken to be r=
−0.3. The calculation of the correction factor from these nu-
merical values of the characteristic parameters of the adsys-
tem shows the following.

First, for high temperatures �see Fig. 3�a�� the correction
factor increases with the applied field F and tends rapidly to
1 when F becomes higher. This result is in accordance with
physical expectations since the increase of the intensity of
the applied field results in the increase of the kinetic energy
of the newly formed kink-antikink pairs. Consequently, im-
purities have little effect on the nucleation rate of kink-
antikink pairs �W→1�. Note that the perturbation theory is
not valid in the case of low temperatures associated to the
weak applied field.
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Second, for the value of the applied field F close to the
threshold field Fm, the correction factor W increases or de-
creases according to whether the temperature is high �see
Fig. 3�b�� or low �see Fig. 3�c��. In fact, in the high-
temperature regime, the correction factor increases with the
applied field. Thus, in this temperature regime, the disorder
in the systems makes the nucleation of kink-antikink pairs
more favorable. However, in the low temperatures, disorder
contributes to make it less favorable.

Finally, it should be noted that the correction factor,
which contains all the information concerning the effect of
impurities, is less than 1 �Figs. 3�a� and 3�b��, indicating the
fact that the presence of impurities in the system makes the
processing of nucleation of kink-antikink pairs less favor-
able. However, for large values of the applied field, the cor-
rection factor is greater than 1 �Fig. 3�c��, indicating the fact
that the impurities catalyze the transition from the critical
nucleus or saddle-point configuration to the newly formed
kink-antikink pairs by making the growth energetically fa-
vorable.

It is important to mention that our model is valid when the
concentration of adatoms, "C, is close to 1. When "C is
greater than 1, the amplitude V0 of the substrate potential is a
function of adatom concentration "C and the compression
forces, in the adatomic chain, overcome the forces “holding”
the adatoms in a given channel and adatoms will start
“creeping out” of the channel so that their motion will be-
come more complex and can be described only in terms of a
two- or three-dimensional model.

VI. CONCLUSION

In this paper, we have investigated the influence of impu-
rities on the nucleation of kink-antikink pairs in the nonlinear
Klein-Gordon model with the Remoissenet-Peyrard substrate
potential driven by an external constant field. We have fo-
cused our attention on the mean velocity of particles of this
one-dimensional system, which is a physical parameter
closely related to the number of kinks and antikinks created
in the system per unit time and length. Moreover, in other
systems like compounds where the electrical properties are
directly related to the existence of charge density waves, this
mean velocity designates the electrical current carried by the
CDW’s.

First, we have improved, by taking into account the non-
Gaussian correction in our calculation, the analytical expres-
sion of the nucleation rate of kink-antikink pairs in the ho-
mogeneous system previously calculated by Yemélé and
Kofané �5�. This calculation is one step towards the study of
the effects of impurities. Next, by means of the Kolmogorov
method associated with the perturbation analysis, we have
shown that the dynamics of the system may be different ac-
cording to whether the intensity of the applied field is weak
or not compared to the intensity of the impurity potential and
the magnitude of the temperature. More precisely, we have
shown that, in the range of weak values of the applied field,
the quantitative effects of impurities increase with the ap-
plied field and temperature. Moreover, the presence of impu-
rities in the system makes the nucleation process of kink-

FIG. 3. Correction factor to the mean velocity of particles W,
induced by the presence of impurities in the system of H/W, as a
function of the applied field F and for three values of temperature:
�a� The case of weak applied field in the high-temperature regime,
�=6.94�10−8 �eV/Å�2. �b� The case of large applied field in the
high-temperature regime for �=1.11�10−2 �eV/Å�2. �c� The case
of large applied field in the low-temperature regime with �=1.11
�10−2 �eV/Å�2. Note that the choice of the intensity of the impu-
rity potential in the low- and high-temperature regimes is dictated
by the constraints verified by the quantity �� in these temperature
regimes. ����EN for the low-temperature regime or ����EN for
the high-temperature regime.
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antikink pairs less favorable. Furthermore and contrary to the
preceding case, for large values of the applied field, impuri-
ties catalyze the transition from the saddle-point configura-
tion of the system to the newly formed kink-antikink pairs by
making the growth of the nucleus energetically favorable.

Finally, we mention that our numerical applications are
carried out by making use of the parameters of H/W and
H/Ru adsystems where available data exist. However, the
model may be applied to a number of various systems of
condensed matter physics for which the substrate potential is
used to describe its physical phenomena—namely, disloca-
tion kinetic in crystals, electrical current carried by the
CDW’s in the compounds whose electrical properties are due
to the existence of this CDW, or the electrical current in the
long Josephson junctions, to name only a few. The perturba-
tion analysis used here allows one to write down an analyti-
cal expression of the nucleation rate of kink-antikink pairs in
the inhomogeneous 1D system, from which the quantitative
effects of impurities on this quantity can be obtained. This

calculation is one step towards a complete study of the
model. The method is valid only in the case of weak impurity
fields—that is, in the case where impurities have little effect
on the critical nucleus parameters and on its stability. An-
other restriction of this study concerns the correlation length
of the random field of impurities which has been taken equal
to zero although the case of a spatially correlated field may
be of interest for applications to much of condensed matter
systems. These two limitations of our study are now under
consideration.
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